Non-commutative integral forms and twisted multi-derivations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non Commutative Arens Algebras and Their Derivations

Given a von Neumann algebra M with a faithful normal semi-finite trace τ, we consider the non commutative Arens algebra Lω(M, τ) = ⋂ p≥1 Lp(M, τ) and the related algebras L2 (M, τ) = ⋂ p≥2 Lp(M, τ) and M + L2 (M, τ) which are proved to be complete metrizable locally convex *-algebras. The main purpose of the present paper is to prove that any derivation of the algebra M + L2 (M, τ) is inner and...

متن کامل

Integral Non-commutative Spaces

A non-commutative space X is a Grothendieck category ModX. We say X is integral if there is an indecomposable injective X-module EX such that its endomorphism ring is a division ring and every X-module is a subquotient of a direct sum of copies of EX . A noetherian scheme is integral in this sense if and only if it is integral in the usual sense. We show that several classes of non-commutative ...

متن کامل

Relations between Twisted Derivations and Twisted Cyclic Homology

For a given endomorphism on a unitary k-algebra, A, with k in the center of A, there are definitions of twisted cyclic and Hochschild homology. This paper will show that the method used to define them can be used to define twisted de Rham homology. The main result is that twisted de Rham homology can be thought of as the kernel of the Connes map from twisted cyclic homology to twisted Hochschil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Noncommutative Geometry

سال: 2010

ISSN: 1661-6952

DOI: 10.4171/jncg/56